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Abstract. Finite difference approximation of a nonlinear integro-differential equation associated
with the penetration of a magnetic field into a substance is studied. Here we discuss the model
described by a nonlinear integro-differential equation. The system of time dependent ordinary
differential equations is solved using Runge-Kutta method with adaptive step size. The time integral
make this a non-trivial application of the Matlab code ODE45. Eight examples are given with mostly
homogeneous boundary conditions. The results show that when the analytic solution is not growing
in time, then the solution decays at a rate proven theoretically in the literature.

Key words and phrases: Nonlinear integro-differential equations, large time behavior, finite
difference scheme.

AMS subject classification: 45K05, 65N06, 35K55.

1 Introduction

Integro-differential equations and systems of such equations arise in the study of various problems in
physics, chemistry, technology, economics etc. See [1] for more details and theoretical results. Such
systems arise, for instance, for mathematical modelling of the process of penetrating of magnetic
field in the substance. If the coefficient of thermal heat capacity and electroconductivity of the
substance highly dependent on temperature, then the Maxwell’s system, that describe the process
of penetration of a magnetic field into a substance [2], can be rewritten in the following form [3]:

∂H

∂t
= −rot

a
 t∫

0

|rotH|2 dτ

 rotH

 , (1.1)

where H = (H1, H2, H3) is a vector of the magnetic field and the function a = a(S) is defined for
S ∈ [0,∞).

If the magnetic field has the form H = (0, 0, U) and U = U(x, t), then we have

rot(a(S)rotH) =

(
0, 0, − ∂

∂x

(
a(S)

∂U

∂x

))
.

Therefore, we obtain the following nonlinear integro-differential equation:

∂U

∂t
=

∂

∂x

a
 t∫

0

[(
∂U

∂x

)2
]
dτ

 ∂U

∂x

 , (1.2)

Note that (1.2) is complex, but special cases were investigated, see [3]-[8]. The existence of
global solutions for initial-boundary value problems of such models have been proven in [3],[4],[8] by
using the Galerkin and compactness methods [9],[10]. For solvability and uniqueness properties for
initial-boundary value problems (1.2), see e.g. [5]-[7]. The asymptotic behavior of the solutions of
(1.2) have been the subject of intensive research in recent years, (see e.g. [1], [8],[11]).

Laptev [6] proposed some generalization of equations of type (1.1). Assume the temperature of
the considered body is constant throughout the material, i.e., depending on time, but independent of
the space coordinates. If the magnetic field again has the form H = (0, 0, U) and U = U(x, t), then
the same process of penetration of the magnetic field into the material is modeled by the following
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integro-differential equation [6]:

∂U

∂t
= a

 t∫
0

1∫
0

[(
∂U

∂x

)2
]
dxdτ

 ∂2U

∂x2
. (1.3)

The purpose of this work is to study the finite difference approximation for the case a(S) = 1+S.
The solvability, uniqueness and asymptotics to the solutions of (1.3) type scalar models are studied
in [8] and [12].

Note that in [13] and [14] difference schemes for (1.2) type models were investigated. Difference
schemes for one nonlinear parabolic integro-differential scalar model similar to (1.2) were studied in
[15]. Difference schemes for the scalar equation of (1.3) type with a(S) = 1 +S were studied in [16].

The rest of this report is organized as follows. In the second section the finite difference scheme for
(1.3) is investigated. In the third section we present several numerical examples with homogeneous
and non-homogeneous boundary conditions. These results validate the theoretical results found in
the literature.

2 Finite difference scheme

In the rectangle QT = (0, 1) × (0, T ), where T is a positive constant, we discuss finite difference
approximation of the nonlinear integro-differential problem:

∂U

∂t
−

1 +

t∫
0

1∫
0

[(
∂U

∂x

)2
]
dxdτ

 ∂2U

∂x2
= f(x, t), (2.1)

U(0, t) = U(1, t) = 0, (2.2)

U(x, 0) = U0(x). (2.3)

Here f1 = f(x, t), U0 = U0(x) are given sufficiently smooth functions of their arguments.
We introduce a net in the rectangle QT whose mesh points are denoted by (xi, tj) = (ih, jτ),

where i = 0, 1, ...,M and j = 0, 1, ..., N with h = 1/M, τ = T/N . The initial line is denoted by
j = 0. The discrete approximation at (xi, tj) is denoted by uji , v

j
i and the exact solution to the

problem (2.1)-(2.3) at those points by U j
i . We will use the following notations for the differences

and norms:

∆xr
j
i =

rji+1 − r
j
i

h
, ∇xr

j
i =

rji − r
j
i−1

h
,

‖r‖h =

(
M−1∑
i=1

r2i h

)1/2

, ‖r]|h =

(
M∑
i=1

r2i h

)1/2

.

Thus we have
du

dt
|ji − {1 + Sj}∆x∇xu

j+1
i = f ji ,

i = 1, 2, ...,M − 1; j = 0, 1, ..., N − 1,

(2.4)

uj0 = ujM = 0, j = 0, 1, ..., N, (2.5)

u0i = U0,i, i = 0, 1, ...,M, (2.6)
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where

Sj = τh

M∑
l=1

(∇xu
j
l )

2 + Sj−1 (2.7)

and S0 = 0.
The system of ODEs (2.4) will be solved using Runge-Kutta-Fehlberg of orders four and five, see

[18], (Matlab routine ODE45) using adaptive time step. Because of the integral over time on the
right, we had to call ODE45 for each time sub-interval of length τ to be chosen by the user. The
relative error tolerance set to 10−6 and the relative error tolerance is set to 10−3.

Jangveladze et al. [1] have shown that

‖un‖2h +

n∑
j=1

‖∇xu
j ]|2hτ < C, n = 1, 2, ..., N. (2.8)

In (2.8) the constant C depends on T and on f respectively.
The a-priori estimate (2.8) guarantees the stability and existence, see [10], of solution of the

scheme (2.4)-(2.6).

Remark: Note, that according to the scheme of proving convergence theorem, the uniqueness
of the solution of the scheme (2.4)-(2.6) can be proven. In particular, assuming the existence
of two solutions u and ū of the scheme (2.4)-(2.6), then for the differences ȳ = u − ū we get
‖ȳn‖2h ≤ 0, n = 1, 2, ..., N . So, ȳ ≡ 0.

3 Numerical results

In this section, we list eight examples for which we choose f(x, t) so that the exact solution is
given. All examples but the last are problems with homogeneous boundary conditions. Most of the
examples have a solution decaying in time. We will plot the numerical and anlytic solutions side by
side as well as plotting the difference between the two as a function of x and t. We also demonstarte
how the error changes when we refine the spatial grid for a fixed time step and similarly when we
fix the spatial grid and reduce the time step.

Example 1:
In our first numerical experiment we have chosen the right hand side so that the exact solution

is given by
U(x, t) = e−t sin(πx).

In this case the right hand side is

f(x, t) = e−tsin(πx)(−1 + π2 + π4/4(1− e−2t))

The numerical solution is plotted in Figure 1 using M = 100 grid points and to its right the
analytic solution. We also plotted the absolute error in Figure 2 and the RMS error as a function
of t in Figure 3. The RMS error is given by

uerr(t) =

√√√√ M∑
i=1

(u(i, t)− U(i, t))2 (3.1)

4



Figure 1: The numerical solution (left) and the analytic solution (right) for the first example

Figure 2: The absolute error between the numerical solution and the analytic solution for the first
example

Figure 3: The RMS error as a function of t for the first example

5



We also give the RMS error as a function of t for various values of grid spacing, i.e. M =
4, 8, 16, 32, 64 for a fixed time step and the same error for a fixed M and various values of time steps
τ = 0.25, 0.125, 0.0625, 0.03125, 0.015625 in Figure 4.

It can be seen that the error increases initially for all M but eventually goes to zero. The rate
of decay increases with increasing M . Similar situation can be seen when M is fixed and the time
step is halved.

Figure 4: The RMS error as a function of t for fixed time step τ = 0.01 and increasing M (left) and
for fixed M = 16 and halving the time step (right) for the first example

Example 2:

U(x, t) = cos(2πt) sin(πx).

In this case the right hand side is

f(x, t) = −2π sin(2πt) sin(πx) + π2
(
1− π2 cos(2πt) sin(πx)

)
cos(2πt) sin(πx).

The numerical solution is plotted in Figure 5 using M = 100 grid points and to its right the
analytic solution. We also plotted the absolute error in Figure 6 and the RMS error (3.1) as a
function of t in Figure 7.

Figure 5: The numerical solution (left) and the analytic solution (right) for the second example
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Figure 6: The absolute error between the numerical solution and the analytic solution for the second
example

Figure 7: The RMS error as a function of t for the second example

We also give the RMS error as a function of t for various values of grid spacing, i.e. M =
4, 8, 16, 32, 64 for a fixed time step τ = 0.01 and the same error for a fixed M = 16 and various
values of time steps τ = 0.25, 0.125, 0.0625, 0.03125, 0.015625 in Figure 8.

It can be seen that the error increases initially for all M but oscillating with diminishing
amplitude. The rate of decay increases with increasing M . Similar situation can be seen when
M is fixed and the time step is halved.

Example 3:

U(x, t) = x(x− 1)(x+ 1)t.

In this case the right hand side is

f(x, t) = x(x− 1)(x+ 1)− (1 + (4t3/15)((2(x+ 1))t+ (2(x− 1))t+ 2xt).

The numerical and analytic solutions are plotted in Figure 9 using M = 100 grid points and to
its right the analytic solution. We also plotted the absolute error in Figure 10 and the RMS error
(3.1) as a function of t in Figure 11.

We also give the RMS error as a function of t for various values of grid spacing, i.e. M =
4, 8, 16, 32, 64 for a fixed time step τ = 0.01 and the same error for a fixed M = 16 and various
values of time steps τ = 0.25, 0.125, 0.0625, 0.03125, 0.015625 in Figure 12.
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Figure 8: The RMS error as a function of t for fixed time step τ = 0.01 and increasing M (left) and
for fixed M = 16 and halving the time step (right) for the second example

Figure 9: The numerical solution (left) and the analytic solution (right) for the third example

It can be seen that the error increases for all M since the solution is increasing as a function of
t. Similar situation can be seen when M is fixed and the time step is halved.
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Figure 10: The absolute error between the numerical solution and the analytic solution for the third
example

Figure 11: The RMS error as a function of t for the third example

Figure 12: The RMS error as a function of t for a fixed time step τ = 0.01 and increasing M (left)
and for fixed M = 16 and halving the time step (right) for the third example
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Example 4:

U(x, t) = e−t/2 sin(3πx).

In this case the right hand side is

f(x, t) = −1

2
e−t/2 sin(3πx) +

(
9π2

(
1 +

9π2

2
− 9π2

2
e−t

))
e−t/2 sin(3πx).

The numerical solution is plotted in Figure 13 using M = 100 grid points and to its right and
the analytic solution. We also plotted the absolute error in Figure 14 and the RMS error (3.1) as a
function of t in Figure 15.

Figure 13: The numerical solution and the analytic solution for the fourth example using M = 100

Figure 14: The absolute error between the numerical solution and the analytic solution for the fourth
example

We also give the RMS error as a function of t for various values of grid spacing, i.e. M =
4, 8, 16, 32, 64 for a fixed time step τ = 0.01 and the same error for a fixed M = 16 and various
values of time steps τ = 0.25, 0.125, 0.0625, 0.03125, 0.015625 in Figure 16.

It can be seen that the error increases initially for all M but eventually goes to zero. The rate
of decay increases with increasing M . Similar situation can be seen when M is fixed and the time
step is halved.
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Figure 15: The RMS error as a function of t for the fourth example

Figure 16: The RMS error as a function of t for fixed time step τ = 0.01 and increasing M (left)
and for fixed M = 16 and halving the time step for the fourth example

Example 5:

U(x, t) = (x2 − x)(t2 − t).

In this case the right hand side is

f(x, t) = x(x− 1)(2t− 1)−
(

1 +
t5

15
− t4

6
+
t3

9

)
(2t2 − 2t).

The numerical solution is plotted in Figure 17 using M = 100 grid points and to its right and
the analytic solution. We also plotted the absolute error in Figure 18 and the RMS error (3.1) as a
function of t in Figure 19.

We also give the RMS error as a function of t for various values of grid spacing, i.e. M =
4, 8, 16, 32, 64 for a fixed time step τ = 0.01 and the same error for a fixed M = 16 and various
values of time steps τ = 0.25, 0.125, 0.0625, 0.03125, 0.015625 in Figure 20.

It can be seen that the error increases for all M since the solution increases as time increases.
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Figure 17: The numerical solution and the analytic solution for the fifth example

Figure 18: The absolute error between the numerical solution and the analytic solution for the fifth
example

Figure 19: The RMS error as a function of t for the fifth example
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Figure 20: The RMS error as a function of t for fixed time step τ = 0.01 and increasing M (left)
and for fixed M = 16 and halving the time step for the fifth example

13



Example 6:

U(x, t) = x(1− x)e−2t.

In this case the right hand side is

f(x, t) = −2x(x− 1)e−2t −
(

13− e−4t

6

)
e−2t.

The numerical and analytic solutions ares plotted in Figure 21 using M = 100 grid points and
to its right and the analytic solution. We also plotted the absolute error in Figure 22 and the RMS
error (3.1) as a function of t in Figure 23.

Figure 21: The numerical solution and the analytic solution for the sixth example.

Figure 22: The absolute error between the numerical solution and the analytic solution for the sixth
example

We also give the RMS error as a function of t for various values of grid spacing, i.e. M =
4, 8, 16, 32, 64 for a fixed time step and the same error for a fixed M = 16 and various values of time
steps τ = 0.25, 0.125, 0.0625, 0.03125, 0.015625 in Figure 24.

It can be seen that the error increases initially for all M but eventually goes to zero. The rate
of decay increases with increasing M . Similar situation can be seen when M is fixed and the time
step is halved.
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Figure 23: The RMS error as a function of t for the sixth example

Figure 24: The RMS error as a function of t for fixed time step τ = 0.01 and increasing M (left)
and for fixed M = 16 and halving the time step for the sixth example
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Example 7:

U(x, t) = x(1− x) sin(x+ t).

In this case the right hand side is

f(x, t) = x(1− x) cos(x+ t)− (1 + 11
60 t−

1
8 sin(t) cos(t)− 1

8 sin(t) cos(t+ 2))

× ((−2− x+ x2) sin(x+ t) + 2(1− 2x) cos(x+ t))

The numerical solution is plotted in Figure 25 using M = 100 grid points and to its right and
the analytic solution. We also plotted the absolute error in Figure 26 and the RMS error (3.1) as a
function of t in Figure 27.

Figure 25: The numerical and the analytic solutions for the seventh example

Figure 26: The absolute error between the numerical solution and the analytic solution for the
seventh example

We also give the RMS error as a function of t for various values of grid spacing, i.e. M =
4, 8, 16, 32, 64 for a fixed time step and the same error for a fixed M = 16 and various values of time
steps τ = 0.25, 0.125, 0.0625, 0.03125, 0.015625 in Figure 28.

It can be seen that the error oscillates for all M with diminishing amplitude when decreasing τ
or increasing M . The analytic solution is bounded for all t and the RMS error is also bounded.
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Figure 27: The RMS error as a function of t for the seventh example

Figure 28: The RMS error as a function of t for fixed time step τ = 0.01 and increasing M (left)
and for fixed M = 16 and halving the time step for the seventh example

For this example, we also show that the analytic and numrical solutions (Figure 29) oscillate
when t increases to t = 5.

17



Figure 29: The numerical and the analytic solutions for the seventh example
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Example 8:
In our last example, we have taken a non-homogeneous boundary conditions.

U(x, t) = x(x− 1)t+ x2 + 1.

In this case the right hand side is

f(x, t) = x2 − x− (1 + t3

9 + t2

3 + 4t
3 )(2t+ 2)

The boundary conditions are
u(0, t) = 1,
u(1, t) = 2.

The numerical solution is plotted in Figure 30 using M = 100 grid points and to its right and the
analytic solution. We also plotted the absolute error in Figure 31 and the RMS error (3.1) as a
function of t in Figure 32.

Figure 30: The numerical solution and the analytic solution for the last example

Figure 31: The absolute error between the numerical solution and the analytic solution for the last
example

We also give the RMS error as a function of t for various values of grid spacing, i.e. M =
4, 8, 16, 32, 64 for a fixed time step τ = 0.01 and the same error for a fixed M = 16 and various
values of time steps τ = 0.25, 0.125, 0.0625, 0.03125, 0.015625 in Figure 33.
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Figure 32: The RMS error as a function of t for the last example

It can be seen that the error increases initially for all M but eventually goes down, except for
M = 4. It doesn’t approach zero, since the solution grows linearly in t and quadratically in x. The
error mainly decreases with increasing M . Similar situation can be seen when M is fixed and the
time step is halved.

Figure 33: The RMS error as a function of t for fixed time step τ = 0.01 and increasing M (left)
and for fixed M = 16 and halving the time step for the last example
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Conclusions We reported on application of the Matlab code ODE45 in the use of solving a
nonlinear diffusion model with memory. Eight examples were given, demonstrating the capability
of the code to solve both the cases of homogeneous and inhomogeneous boundary conditions. The
generalization to a system of such equations is trivial and was discussed in the literature. Although
there the authors did not use ODE45.
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